18 research outputs found

    Trajectory generation for continuous leg forces during double support and heel-to-toe shift based on divergent component of motion

    Get PDF
    This paper works with the concept of Divergent Component of Motion (DCM), also called ’(instantaneous) Capture Point’. We present two real-time DCM trajectory generators for uneven (three-dimensional) ground surfaces, which lead to continuous leg (and corresponding ground reaction) force profiles and facilitate the use of toe-off motion during double support. Thus, the resulting DCM trajectories are well suited for real-world robots and allow for increased step length and step height. The performance of the proposed methods was tested in numerous simulations and experiments on IHMC’s Atlas robot and DLR’s humanoid robot TORO

    Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot

    Get PDF
    This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed-integer, and sparse nonlinear optimization to problems ranging from footstep placement to whole-body planning and control. We also present a state estimator formulation that, when combined with our walking controller, permits highly precise execution of extended walking plans over non-flat terrain. We describe our complete system integration and experiments carried out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics, Inc.United States. Air Force Office of Scientific Research (FA8750-12-1-0321)United States. Office of Naval Research (N00014-12-1-0071)United States. Office of Naval Research (N00014-10-1-0951)National Science Foundation (U.S.) (IIS-0746194)National Science Foundation (U.S.) (IIS-1161909

    An Architecture for Online Affordance-based Perception and Whole-body Planning

    Get PDF
    The DARPA Robotics Challenge Trials held in December 2013 provided a landmark demonstration of dexterous mobile robots executing a variety of tasks aided by a remote human operator using only data from the robot's sensor suite transmitted over a constrained, field-realistic communications link. We describe the design considerations, architecture, implementation and performance of the software that Team MIT developed to command and control an Atlas humanoid robot. Our design emphasized human interaction with an efficient motion planner, where operators expressed desired robot actions in terms of affordances fit using perception and manipulated in a custom user interface. We highlight several important lessons we learned while developing our system on a highly compressed schedule

    LVIS: Learning from Value Function Intervals for Contact-Aware Robot Controllers

    No full text

    Balance control using center of mass height variation: Limitations imposed by unilateral contact

    No full text
    Maintaining balance is fundamental to legged robots. The most commonly used mechanisms for balance control are taking a step, regulating the center of pressure ('ankle strategies'), and to a lesser extent, changing centroidal angular momentum (e.g., 'hip strategies'). In this paper, we disregard these three mechanisms, instead focusing on a fourth: varying center of mass height. We study a 2D variable-height center of mass model, and analyze how center of mass height variation can be used to achieve balance, in the sense of convergence to a fixed point of the dynamics. In this analysis, we pay special attention to the constraint of unilateral contact forces. We first derive a necessary condition that must be satisfied to be able to achieve balance. We then present two control laws, and derive their regions of attraction in closed form. We show that one of the control laws achieves balance from any state satisfying the necessary condition for balance. Finally, we briefly discuss the relative importance of CoM height variation and other balance mechanisms. 2016 IEEE

    Balancing and Step Recovery Capturability via Sums-of-Squares Optimization

    No full text
    A fundamental requirement for legged robots is to maintain balance and prevent potentially damaging falls whenever possible. As a response to outside disturbances, fall prevention can be achieved by a combination of active balancing actions, e.g. through ankle torques and upper-body motion, and through reactive step placement. While it is widely accepted that stepping is required to respond to large disturbances, the limits of active motions on balancing and step recovery are only well understood for the simplest of walking models. Recent advances in convex optimization-based verification and control techniques enable a more complete understanding of the limits and capabilities of more complex models. In this work, we present an algorithmic approach for formal analysis of the viable-capture basins of walking robots, calculating both inner and outer approximations and corresponding push recovery control strategies. Extending beyond the classic Linear Inverted Pendulum Model (LIPM), we analyze a series of centroidal momentum based planar walking models, examining the effects of center of mass height, angular momentum, and impact dynamics during stepping on capturability. This formal analysis enables an explicit calculation of the differences between these models, and assessment of whether the simplest models ultimately sacrifice capability, and thus stability, when designing push recovery control policie

    Trajectory generation for continuous leg forces during double support and heel-to-toe shift based on divergent component of motion

    No full text
    This paper works with the concept of Divergent Component of Motion (DCM), also called ’(instantaneous) Capture Point’. We present two real-time DCM trajectory generators for uneven (three-dimensional) ground surfaces, which lead to continuous leg (and corresponding ground reaction) force profiles and facilitate the use of toe-off motion during double support. Thus, the resulting DCM trajectories are well suited for real-world robots and allow for increased step length and step height. The performance of the proposed methods was tested in numerous simulations and experiments on IHMC’s Atlas robot and DLR’s humanoid robot TORO

    Director: A User Interface Designed for Robot Operation with Shared Autonomy

    No full text
    Operating a high degree of freedom mobile manipulator, such as a humanoid, in a field scenario requires constant situational awareness, capable perception modules, and effective mechanisms for interactive motion planning and control. A well-designed operator interface presents the operator with enough context to quickly carry out a mission and the flexibility to handle unforeseen operating scenarios robustly. By contrast, an unintuitive user interface can increase the risk of catastrophic operator error by overwhelming the user with unnecessary information. With these principles in mind, we present the philosophy and design decisions behind Director—the open-source user interface developed by Team MIT to pilot the Atlas robot in the DARPA Robotics Challenge (DRC). At the heart of Director is an integrated task execution system that specifies sequences of actions needed to achieve a substantive task, such as drilling a wall or climbing a staircase. These task sequences, developed a priori, make online queries to automated perception and planning algorithms with outputs that can be reviewed by the operator and executed by our whole-body controller. Our use of Director at the DRC resulted in efficient high-level task operation while being fully competitive with approaches focusing on teleoperation by highly trained operators. We discuss the primary interface elements that comprise Director, and we provide an analysis of its successful use at the DRC.United States. Defense Advanced Research Projects Agency. (Air Force Research Laboratory (award FA8750-12-1-0321))United States. Office of Naval Research (Award N00014-12-1-0071
    corecore